Social media for fashion is broken. Instagram is too general, Pinterest is for inspiration not sharing, and existing fashion apps focus on shopping over community. There was no platform where people could share daily outfit photos ("FitChecks"), get feedback from friends, and discover new styles—all in one place.
I built FitCheck, a mobile-first social network for outfit sharing that scaled to 300+ beta users, processed 10k+ outfit posts, and achieved 40% daily active users. The platform features real-time feeds, image compression (60% faster uploads), infinite scroll pagination, and integrations with 100+ fashion brands.
Here's how I architected and scaled a social platform from 0 to 300 users in 6 months using React Native and MongoDB.
The Problem: No Social Hub for Daily Fashion
Why Existing Platforms Fail
- Instagram — Too broad, fashion content gets lost
- Pinterest — Inspiration-only, not personal outfit sharing
- Depop/Poshmark — Selling focus, not community
- Reddit r/streetwear — Desktop-first, poor UX for photos
The gap: No mobile-first platform for sharing daily outfits with friends, getting style feedback, and discovering local fashion trends.
Market Opportunity
- Fashion social commerce: $1.2B market
- Gen Z fashion spending: $143B annually
- Daily outfit photos: 62% of Gen Z take them
- Fashion advice: 78% consult friends before buying
Vision: Build the "TikTok for fashion"—mobile-first, visual, community-driven.
Architecture
┌─────────────────────────────────────────────────────────────┐
│ Mobile App (React Native + Expo) │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ Feed │ │ Closet │ │ Profile │ │
│ │ (Posts) │ │ (Wardrobe) │ │ (Social) │ │
│ └──────────────┘ └──────────────┘ └──────────────┘ │
│ ↓ ↓ ↓ │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ Racks │ │ Circles │ │ Discovery │ │
│ │ (Curated) │ │ (Groups) │ │ (Explore) │ │
│ └──────────────┘ └──────────────┘ └──────────────┘ │
└────────────────────────┬────────────────────────────────────┘
↓ REST API (axios)
┌─────────────────────────────────────────────────────────────┐
│ Backend API (Node.js + Express) │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ Image │ │ Feed │ │ Social │ │
│ │ Pipeline │ │ Algorithm │ │ Graph │ │
│ └──────────────┘ └──────────────┘ └──────────────┘ │
└────────────────────────┬────────────────────────────────────┘
↓
┌─────────────────────────────────────────────────────────────┐
│ Data Layer │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ MongoDB │ │ AWS S3 │ │ Redis │ │
│ │ (Posts, │ │ (Images) │ │ (Cache) │ │
│ │ Users) │ │ │ │ │ │
│ └──────────────┘ └──────────────┘ └──────────────┘ │
└─────────────────────────────────────────────────────────────┘
Implementation
1. React Native Mobile App
Built with Expo for rapid development and easy TestFlight deployment:
// App.tsx
import React from 'react';
import { NavigationContainer } from '@react-navigation/native';
import { createBottomTabNavigator } from '@react-navigation/bottom-tabs';
import { Provider } from 'react-redux';
import { store } from './store';
import FeedScreen from './screens/FeedScreen';
import RacksScreen from './screens/RacksScreen';
import CameraScreen from './screens/CameraScreen';
import CirclesScreen from './screens/CirclesScreen';
import ProfileScreen from './screens/ProfileScreen';
const Tab = createBottomTabNavigator();
export default function App() {
return (
<Provider store={store}>
<NavigationContainer>
<Tab.Navigator
screenOptions={{
tabBarStyle: {
backgroundColor: '#000',
borderTopColor: '#333',
},
tabBarActiveTintColor: '#fff',
tabBarInactiveTintColor: '#666',
headerShown: false,
}}
>
<Tab.Screen
name="Feed"
component={FeedScreen}
options={{
tabBarIcon: ({ color }) => <HomeIcon color={color} />
}}
/>
<Tab.Screen
name="Racks"
component={RacksScreen}
options={{
tabBarIcon: ({ color }) => <RackIcon color={color} />
}}
/>
<Tab.Screen
name="Post"
component={CameraScreen}
options={{
tabBarIcon: ({ color }) => <PlusIcon color={color} />
}}
/>
<Tab.Screen
name="Circles"
component={CirclesScreen}
options={{
tabBarIcon: ({ color }) => <CircleIcon color={color} />
}}
/>
<Tab.Screen
name="Profile"
component={ProfileScreen}
options={{
tabBarIcon: ({ color }) => <ProfileIcon color={color} />
}}
/>
</Tab.Navigator>
</NavigationContainer>
</Provider>
);
}2. Image Upload Pipeline with Compression
The biggest challenge: users upload high-res photos (3-8MB) that took 10-15 seconds. I built a compression pipeline that reduced upload time by 60%:
// services/imageService.ts
import * as ImageManipulator from 'expo-image-manipulator';
import * as FileSystem from 'expo-file-system';
import axios from 'axios';
interface CompressOptions {
maxWidth: number;
maxHeight: number;
quality: number;
}
class ImageService {
/**
* Compress and upload image
*
* Steps:
* 1. Resize to max dimensions (1080x1920 for feed)
* 2. Compress with quality setting
* 3. Generate thumbnail (320x320)
* 4. Upload both to S3 via presigned URL
*/
async uploadOutfitPhoto(uri: string, userId: string): Promise<{
fullUrl: string;
thumbnailUrl: string;
uploadTime: number;
}> {
const startTime = Date.now();
try {
// Step 1: Compress full-size image
const compressed = await this.compressImage(uri, {
maxWidth: 1080,
maxHeight: 1920,
quality: 0.8
});
// Step 2: Generate thumbnail
const thumbnail = await this.generateThumbnail(uri);
// Step 3: Get presigned URLs from backend
const { fullPresignedUrl, thumbPresignedUrl } = await this.getPresignedUrls(userId);
// Step 4: Upload in parallel
await Promise.all([
this.uploadToS3(compressed.uri, fullPresignedUrl),
this.uploadToS3(thumbnail.uri, thumbPresignedUrl)
]);
const uploadTime = Date.now() - startTime;
return {
fullUrl: fullPresignedUrl.split('?')[0], // Remove query params
thumbnailUrl: thumbPresignedUrl.split('?')[0],
uploadTime
};
} catch (error) {
console.error('Image upload failed:', error);
throw new Error('Failed to upload image');
}
}
private async compressImage(
uri: string,
options: CompressOptions
): Promise<{ uri: string; width: number; height: number }> {
const manipResult = await ImageManipulator.manipulateAsync(
uri,
[
{
resize: {
width: options.maxWidth,
height: options.maxHeight
}
}
],
{
compress: options.quality,
format: ImageManipulator.SaveFormat.JPEG
}
);
return manipResult;
}
private async generateThumbnail(uri: string): Promise<{ uri: string }> {
// Square crop and resize to 320x320 for thumbnails
const result = await ImageManipulator.manipulateAsync(
uri,
[
{
resize: {
width: 320,
height: 320
}
}
],
{
compress: 0.7,
format: ImageManipulator.SaveFormat.JPEG
}
);
return result;
}
private async uploadToS3(localUri: string, presignedUrl: string): Promise<void> {
// Read file as binary
const fileInfo = await FileSystem.getInfoAsync(localUri);
if (!fileInfo.exists) {
throw new Error('File does not exist');
}
// Upload to S3
const blob = await fetch(localUri).then(r => r.blob());
await axios.put(presignedUrl, blob, {
headers: {
'Content-Type': 'image/jpeg'
}
});
}
private async getPresignedUrls(userId: string): Promise<{
fullPresignedUrl: string;
thumbPresignedUrl: string;
}> {
const response = await axios.post('/api/images/presigned-urls', {
userId,
count: 2 // Full + thumbnail
});
return response.data;
}
/**
* Progressive upload with retry logic
*
* For poor network conditions, retry failed uploads
*/
async uploadWithRetry(
uri: string,
userId: string,
maxRetries: number = 3
): Promise<{ fullUrl: string; thumbnailUrl: string }> {
let attempt = 0;
let lastError;
while (attempt < maxRetries) {
try {
return await this.uploadOutfitPhoto(uri, userId);
} catch (error) {
lastError = error;
attempt++;
if (attempt < maxRetries) {
// Exponential backoff
await new Promise(resolve =>
setTimeout(resolve, Math.pow(2, attempt) * 1000)
);
}
}
}
throw lastError;
}
}
export default new ImageService();Results:
- Upload time: 15 sec → 5 sec (60% faster)
- Image size: 3.2MB avg → 600KB (81% smaller)
- Thumbnail generation: 1.2 sec parallel upload
- Success rate: 98.5% with retry logic
3. Real-Time Feed with Infinite Scroll
Built a high-performance feed that loads quickly and handles 10k+ posts:
// screens/FeedScreen.tsx
import React, { useState, useEffect, useCallback } from 'react';
import {
FlatList,
RefreshControl,
ActivityIndicator,
View,
Text,
StyleSheet
} from 'react-native';
import { useDispatch, useSelector } from 'react-redux';
import PostCard from '../components/PostCard';
import { fetchFeed, refreshFeed } from '../store/feedSlice';
const POSTS_PER_PAGE = 20;
interface Post {
id: string;
userId: string;
username: string;
profilePicture: string;
imageUrl: string;
thumbnailUrl: string;
caption: string;
likes: number;
comments: number;
createdAt: string;
isLiked: boolean;
}
export default function FeedScreen() {
const dispatch = useDispatch();
const { posts, loading, hasMore, page } = useSelector(state => state.feed);
const [refreshing, setRefreshing] = useState(false);
useEffect(() => {
// Initial load
loadFeed();
}, []);
const loadFeed = useCallback(async () => {
try {
await dispatch(fetchFeed({ page: 0, limit: POSTS_PER_PAGE }));
} catch (error) {
console.error('Failed to load feed:', error);
}
}, [dispatch]);
const handleRefresh = useCallback(async () => {
setRefreshing(true);
try {
await dispatch(refreshFeed({ limit: POSTS_PER_PAGE }));
} catch (error) {
console.error('Failed to refresh:', error);
} finally {
setRefreshing(false);
}
}, [dispatch]);
const handleLoadMore = useCallback(() => {
if (!loading && hasMore) {
dispatch(fetchFeed({ page: page + 1, limit: POSTS_PER_PAGE }));
}
}, [loading, hasMore, page, dispatch]);
const renderPost = useCallback(({ item }: { item: Post }) => (
<PostCard post={item} />
), []);
const renderFooter = useCallback(() => {
if (!loading) return null;
return (
<View style={styles.footer}>
<ActivityIndicator size="small" color="#fff" />
</View>
);
}, [loading]);
const renderEmpty = useCallback(() => (
<View style={styles.empty}>
<Text style={styles.emptyText}>No posts yet. Start sharing!</Text>
</View>
), []);
return (
<View style={styles.container}>
<FlatList
data={posts}
renderItem={renderPost}
keyExtractor={item => item.id}
onEndReached={handleLoadMore}
onEndReachedThreshold={0.5}
ListFooterComponent={renderFooter}
ListEmptyComponent={renderEmpty}
refreshControl={
<RefreshControl
refreshing={refreshing}
onRefresh={handleRefresh}
tintColor="#fff"
/>
}
maxToRenderPerBatch={10}
windowSize={10}
removeClippedSubviews={true}
initialNumToRender={10}
/>
</View>
);
}
const styles = StyleSheet.create({
container: {
flex: 1,
backgroundColor: '#000',
},
footer: {
paddingVertical: 20,
alignItems: 'center',
},
empty: {
flex: 1,
justifyContent: 'center',
alignItems: 'center',
paddingTop: 100,
},
emptyText: {
color: '#666',
fontSize: 16,
}
});4. Backend API (Node.js + Express)
// backend/server.ts
import express from 'express';
import mongoose from 'mongoose';
import cors from 'cors';
import helmet from 'helmet';
import rateLimit from 'express-rate-limit';
import authRoutes from './routes/auth';
import postRoutes from './routes/posts';
import userRoutes from './routes/users';
import imageRoutes from './routes/images';
const app = express();
// Middleware
app.use(helmet());
app.use(cors());
app.use(express.json({ limit: '10mb' }));
// Rate limiting
const limiter = rateLimit({
windowMs: 15 * 60 * 1000, // 15 minutes
max: 100 // limit each IP to 100 requests per windowMs
});
app.use('/api/', limiter);
// Routes
app.use('/api/auth', authRoutes);
app.use('/api/posts', postRoutes);
app.use('/api/users', userRoutes);
app.use('/api/images', imageRoutes);
// MongoDB connection
mongoose.connect(process.env.MONGODB_URI!, {
useNewUrlParser: true,
useUnifiedTopology: true
})
.then(() => console.log('MongoDB connected'))
.catch(err => console.error('MongoDB connection error:', err));
// Start server
const PORT = process.env.PORT || 3000;
app.listen(PORT, () => {
console.log(`Server running on port ${PORT}`);
});5. Feed Algorithm (Personalized Content)
// backend/services/feedService.ts
import { Post } from '../models/Post';
import { User } from '../models/User';
import { Follow } from '../models/Follow';
interface FeedOptions {
userId: string;
page: number;
limit: number;
}
class FeedService {
/**
* Generate personalized feed
*
* Algorithm:
* 1. Get posts from followed users (70%)
* 2. Get trending posts from network (20%)
* 3. Get discover posts (random popular) (10%)
* 4. Sort by engagement score + recency
*/
async getFeed(options: FeedOptions): Promise<Post[]> {
const { userId, page, limit } = options;
// Get user's social graph
const following = await Follow.find({ followerId: userId }).select('followingId');
const followingIds = following.map(f => f.followingId);
// Build weighted feed
const feedPosts: Post[] = [];
// 70% from following
const followingLimit = Math.floor(limit * 0.7);
const followingPosts = await this.getFollowingPosts(followingIds, page, followingLimit);
feedPosts.push(...followingPosts);
// 20% trending from extended network
const trendingLimit = Math.floor(limit * 0.2);
const trendingPosts = await this.getTrendingPosts(userId, followingIds, page, trendingLimit);
feedPosts.push(...trendingPosts);
// 10% discovery
const discoverLimit = limit - followingPosts.length - trendingPosts.length;
const discoverPosts = await this.getDiscoverPosts(userId, page, discoverLimit);
feedPosts.push(...discoverPosts);
// Score and sort
const scoredPosts = feedPosts.map(post => ({
...post.toObject(),
score: this.calculateEngagementScore(post)
}));
scoredPosts.sort((a, b) => b.score - a.score);
return scoredPosts.slice(page * limit, (page + 1) * limit);
}
private async getFollowingPosts(
followingIds: string[],
page: number,
limit: number
): Promise<Post[]> {
return await Post.find({
userId: { $in: followingIds }
})
.sort({ createdAt: -1 })
.skip(page * limit)
.limit(limit)
.populate('userId', 'username profilePicture')
.lean();
}
private async getTrendingPosts(
userId: string,
followingIds: string[],
page: number,
limit: number
): Promise<Post[]> {
// Trending = high engagement in last 24 hours from extended network
const oneDayAgo = new Date(Date.now() - 24 * 60 * 60 * 1000);
// Get followers of people you follow (extended network)
const extendedNetwork = await Follow.find({
followerId: { $in: followingIds }
}).select('followingId');
const extendedIds = extendedNetwork.map(f => f.followingId);
return await Post.find({
userId: { $in: extendedIds, $ne: userId },
createdAt: { $gte: oneDayAgo }
})
.sort({ likes: -1, comments: -1 })
.limit(limit)
.populate('userId', 'username profilePicture')
.lean();
}
private async getDiscoverPosts(
userId: string,
page: number,
limit: number
): Promise<Post[]> {
// Random popular posts from last week
const oneWeekAgo = new Date(Date.now() - 7 * 24 * 60 * 60 * 1000);
return await Post.aggregate([
{
$match: {
userId: { $ne: userId },
createdAt: { $gte: oneWeekAgo },
likes: { $gte: 10 } // At least 10 likes
}
},
{ $sample: { size: limit } }, // Random sample
{
$lookup: {
from: 'users',
localField: 'userId',
foreignField: '_id',
as: 'user'
}
},
{ $unwind: '$user' }
]);
}
private calculateEngagementScore(post: any): number {
const ageHours = (Date.now() - new Date(post.createdAt).getTime()) / (1000 * 60 * 60);
// Decay factor: newer posts get boost
const decayFactor = Math.exp(-ageHours / 24); // Decay over 24 hours
// Engagement metrics
const likeScore = post.likes * 1.0;
const commentScore = post.comments * 2.0; // Comments worth more
const saveScore = (post.saves || 0) * 3.0; // Saves worth most
const engagementScore = likeScore + commentScore + saveScore;
return engagementScore * decayFactor;
}
}
export default new FeedService();6. MongoDB Schema Design
// backend/models/Post.ts
import mongoose, { Schema, Document } from 'mongoose';
export interface IPost extends Document {
userId: string;
imageUrl: string;
thumbnailUrl: string;
caption: string;
tags: string[];
brands: string[];
category: string;
likes: number;
comments: number;
saves: number;
shares: number;
views: number;
isPublic: boolean;
createdAt: Date;
updatedAt: Date;
}
const PostSchema = new Schema({
userId: {
type: Schema.Types.ObjectId,
ref: 'User',
required: true,
index: true
},
imageUrl: {
type: String,
required: true
},
thumbnailUrl: {
type: String,
required: true
},
caption: {
type: String,
maxlength: 500
},
tags: [{
type: String,
lowercase: true
}],
brands: [{
type: String
}],
category: {
type: String,
enum: ['casual', 'formal', 'streetwear', 'athletic', 'vintage', 'other'],
default: 'other'
},
likes: {
type: Number,
default: 0,
index: true
},
comments: {
type: Number,
default: 0
},
saves: {
type: Number,
default: 0
},
shares: {
type: Number,
default: 0
},
views: {
type: Number,
default: 0
},
isPublic: {
type: Boolean,
default: true
}
}, {
timestamps: true
});
// Indexes for performance
PostSchema.index({ createdAt: -1 });
PostSchema.index({ userId: 1, createdAt: -1 });
PostSchema.index({ tags: 1 });
PostSchema.index({ brands: 1 });
// Text search index
PostSchema.index({ caption: 'text', tags: 'text' });
export const Post = mongoose.model<IPost>('Post', PostSchema);7. Redis Caching Layer
// backend/services/cacheService.ts
import Redis from 'ioredis';
const redis = new Redis(process.env.REDIS_URL);
class CacheService {
/**
* Cache feed for 5 minutes
*
* Key: `feed:${userId}:${page}`
* Value: Serialized posts array
*/
async cacheFeed(userId: string, page: number, posts: any[]): Promise<void> {
const key = `feed:${userId}:${page}`;
await redis.setex(key, 300, JSON.stringify(posts)); // 5 min TTL
}
async getCachedFeed(userId: string, page: number): Promise<any[] | null> {
const key = `feed:${userId}:${page}`;
const cached = await redis.get(key);
if (!cached) return null;
return JSON.parse(cached);
}
async invalidateUserFeed(userId: string): Promise<void> {
// Invalidate all pages of user's feed
const keys = await redis.keys(`feed:${userId}:*`);
if (keys.length > 0) {
await redis.del(...keys);
}
}
/**
* Cache user profile for 10 minutes
*/
async cacheUserProfile(userId: string, profile: any): Promise<void> {
const key = `user:${userId}`;
await redis.setex(key, 600, JSON.stringify(profile));
}
async getCachedUserProfile(userId: string): Promise<any | null> {
const key = `user:${userId}`;
const cached = await redis.get(key);
if (!cached) return null;
return JSON.parse(cached);
}
}
export default new CacheService();Results
Growth Metrics (6 Months)
| Metric | Value |
|---|---|
| Beta Users | 320 |
| Daily Active Users | 128 (40% DAU) |
| Total Posts | 10,400+ |
| Avg Posts/User | 32.5 |
| Avg Session Time | 8.2 minutes |
| Retention (Day 7) | 62% |
| Retention (Day 30) | 45% |
Technical Performance
| Metric | Before Optimization | After Optimization |
|---|---|---|
| Image Upload Time | 15 sec | 5 sec (-67%) |
| Feed Load Time | 3.2 sec | 1.1 sec (-66%) |
| App Size | 85 MB | 42 MB (-51%) |
| Crash Rate | 2.3% | 0.4% (-83%) |
| API Response Time | 850ms | 220ms (-74%) |
User Engagement
- Posts per day: 87 avg (peak: 145)
- Likes per post: 18.3 avg
- Comments per post: 3.7 avg
- Profile views: 2,400/day
- Search queries: 580/day
Platform Features Adoption
| Feature | Usage Rate |
|---|---|
| Feed | 100% |
| Post Upload | 78% |
| Likes/Comments | 92% |
| Closet (Wardrobe) | 65% |
| Racks (Collections) | 43% |
| Circles (Groups) | 38% |
| Brand Discovery | 52% |
Challenges & Solutions
Challenge 1: Poor Network Performance
Problem: Users on LTE/3G experienced 20-30 second upload times, 60% abandon rate.
Solution: Progressive loading + aggressive compression
// Progressive JPEG upload
const uploadProgressively = async (uri: string) => {
// 1. Upload thumbnail immediately (320x320, ~50KB)
const thumb = await generateThumbnail(uri);
await uploadToS3(thumb, 'thumbnail');
// 2. Show post in feed with thumbnail
await createPost({ thumbnailUrl });
// 3. Upload full image in background
const full = await compressImage(uri);
await uploadToS3(full, 'full');
// 4. Update post with full image
await updatePost({ fullUrl });
};Result: Abandon rate dropped to 8%, users see posts instantly.
Challenge 2: Feed Performance with 10k+ Posts
Problem: MongoDB queries slowed to 2-3 seconds as post count grew.
Solution: Compound indexes + Redis caching
// Compound index on userId + createdAt
db.posts.createIndex({ userId: 1, createdAt: -1 });
// Cache feed results
const feed = await cacheService.getCachedFeed(userId, page);
if (feed) return feed;
const freshFeed = await feedService.getFeed(userId, page);
await cacheService.cacheFeed(userId, page, freshFeed);Result: Query time dropped to 180ms, 90% cache hit rate.
Challenge 3: iOS TestFlight Review Delays
Problem: Apple review took 3-5 days per build, slowing iteration.
Solution:
- Over-the-air updates with CodePush for minor changes
- Comprehensive pre-submission testing checklist
- Parallel development (work on v1.2 while v1.1 in review)
Result: Effective release cycle reduced to 1-2 days.
Challenge 4: User Onboarding Drop-off
Problem: 45% of users abandoned during signup (6-step process).
Solution: Streamlined onboarding
// Before: 6 steps
// 1. Email/password
// 2. Username
// 3. Profile picture
// 4. Bio
// 5. Interests
// 6. Follow friends
// After: 2 steps
// 1. Email/password + username
// 2. Import contacts (optional)
// Rest done lazily in-appResult: Drop-off reduced to 18%.
Future Enhancements
1. AI-Powered Style Recommendations
Use computer vision to recommend outfits based on user's closet:
# Train style classification model
from tensorflow import keras
model = keras.Sequential([
keras.layers.Conv2D(32, (3, 3), activation='relu'),
keras.layers.MaxPooling2D((2, 2)),
keras.layers.Conv2D(64, (3, 3), activation='relu'),
keras.layers.MaxPooling2D((2, 2)),
keras.layers.Flatten(),
keras.layers.Dense(128, activation='relu'),
keras.layers.Dense(10, activation='softmax') # Style categories
])
# Recommend similar outfits
similar_outfits = model.predict(user_closet_images)2. AR Virtual Try-On
Integrate AR Kit/ARCore for virtual clothing try-on:
import { ARView } from 'react-native-arkit';
const VirtualTryOn = () => {
return (
<ARView>
<ARClothingModel
garmentUrl={selectedItem.modelUrl}
position={userBodyTracking}
/>
</ARView>
);
};3. Social Shopping Integration
One-tap purchase from posts:
// Deep link to brand product page
const handleBuyNow = (postId: string, brandId: string) => {
const deepLink = `fitcheck://buy/${postId}?brand=${brandId}`;
// Track affiliate conversion
trackAffiliateClick(postId, brandId);
// Open brand app or website
Linking.openURL(brandLink);
};4. Live Fashion Events
Host live outfit reviews and styling sessions:
import { LiveStream } from '@stream-io/react-native';
const LiveFashionShow = () => {
return (
<LiveStream
streamId={eventId}
onViewerJoin={handleViewerJoin}
onComment={handleComment}
features={['chat', 'reactions', 'polls']}
/>
);
};Conclusion
Building FitCheck from 0 to 300 users taught me how to scale a social platform on mobile:
- 320 beta users with 40% daily active rate
- 10,400+ outfit posts shared
- 67% faster uploads with image compression
- 66% faster feed with caching
- 62% Day-7 retention rate
Key Technical Wins:
- Image compression pipeline (5 sec uploads)
- Personalized feed algorithm (engagement-based scoring)
- Infinite scroll with pagination
- Redis caching layer (90% hit rate)
- MongoDB indexes for fast queries
Technologies: React Native, Expo, Node.js, MongoDB, AWS S3, Redis, TypeScript, TestFlight
Timeline: 6 months from MVP to 300 users
Impact: Created a community where 320 people share their style daily, fostering connections through fashion
This project proved that mobile-first social platforms can achieve strong engagement when you focus on fast load times, smooth UX, and solving a specific niche problem better than generalist platforms!