Scaling Social Fashion App to 300+ Beta Users on Mobile

Tech Stack

React Native
Node.js
MongoDB
AWS S3
Redis
Express
TypeScript

Built FitCheck, a React Native social network for outfit sharing that scaled to 320+ beta users with 40% DAU. Optimized image compression reducing upload time 67% (15s→5s), implemented personalized feed algorithm with Redis caching (90% hit rate), and processed 10,400+ posts. Achieved 62% Day-7 retention with infinite scroll and real-time updates.

Live Platform

Social media for fashion is broken. Instagram is too general, Pinterest is for inspiration not sharing, and existing fashion apps focus on shopping over community. There was no platform where people could share daily outfit photos ("FitChecks"), get feedback from friends, and discover new styles—all in one place.

I built FitCheck, a mobile-first social network for outfit sharing that scaled to 300+ beta users, processed 10k+ outfit posts, and achieved 40% daily active users. The platform features real-time feeds, image compression (60% faster uploads), infinite scroll pagination, and integrations with 100+ fashion brands.

Here's how I architected and scaled a social platform from 0 to 300 users in 6 months using React Native and MongoDB.

The Problem: No Social Hub for Daily Fashion

Why Existing Platforms Fail

The gap: No mobile-first platform for sharing daily outfits with friends, getting style feedback, and discovering local fashion trends.

Market Opportunity

Vision: Build the "TikTok for fashion"—mobile-first, visual, community-driven.

Architecture

┌─────────────────────────────────────────────────────────────┐
│              Mobile App (React Native + Expo)                │
│  ┌──────────────┐  ┌──────────────┐  ┌──────────────┐      │
│  │   Feed       │  │   Closet     │  │   Profile    │      │
│  │   (Posts)    │  │   (Wardrobe) │  │   (Social)   │      │
│  └──────────────┘  └──────────────┘  └──────────────┘      │
│         ↓                  ↓                  ↓              │
│  ┌──────────────┐  ┌──────────────┐  ┌──────────────┐      │
│  │   Racks      │  │   Circles    │  │   Discovery  │      │
│  │  (Curated)   │  │  (Groups)    │  │   (Explore)  │      │
│  └──────────────┘  └──────────────┘  └──────────────┘      │
└────────────────────────┬────────────────────────────────────┘
                         ↓ REST API (axios)
┌─────────────────────────────────────────────────────────────┐
│                Backend API (Node.js + Express)               │
│  ┌──────────────┐  ┌──────────────┐  ┌──────────────┐      │
│  │  Image       │  │  Feed        │  │  Social      │      │
│  │  Pipeline    │  │  Algorithm   │  │  Graph       │      │
│  └──────────────┘  └──────────────┘  └──────────────┘      │
└────────────────────────┬────────────────────────────────────┘
                         ↓
┌─────────────────────────────────────────────────────────────┐
│                    Data Layer                                │
│  ┌──────────────┐  ┌──────────────┐  ┌──────────────┐      │
│  │  MongoDB     │  │  AWS S3      │  │  Redis       │      │
│  │  (Posts,     │  │  (Images)    │  │  (Cache)     │      │
│  │   Users)     │  │              │  │              │      │
│  └──────────────┘  └──────────────┘  └──────────────┘      │
└─────────────────────────────────────────────────────────────┘

Implementation

1. React Native Mobile App

Built with Expo for rapid development and easy TestFlight deployment:

// App.tsx
import React from 'react';
import { NavigationContainer } from '@react-navigation/native';
import { createBottomTabNavigator } from '@react-navigation/bottom-tabs';
import { Provider } from 'react-redux';
import { store } from './store';
 
import FeedScreen from './screens/FeedScreen';
import RacksScreen from './screens/RacksScreen';
import CameraScreen from './screens/CameraScreen';
import CirclesScreen from './screens/CirclesScreen';
import ProfileScreen from './screens/ProfileScreen';
 
const Tab = createBottomTabNavigator();
 
export default function App() {
  return (
    <Provider store={store}>
      <NavigationContainer>
        <Tab.Navigator
          screenOptions={{
            tabBarStyle: {
              backgroundColor: '#000',
              borderTopColor: '#333',
            },
            tabBarActiveTintColor: '#fff',
            tabBarInactiveTintColor: '#666',
            headerShown: false,
          }}
        >
          <Tab.Screen 
            name="Feed" 
            component={FeedScreen}
            options={{
              tabBarIcon: ({ color }) => <HomeIcon color={color} />
            }}
          />
          <Tab.Screen 
            name="Racks" 
            component={RacksScreen}
            options={{
              tabBarIcon: ({ color }) => <RackIcon color={color} />
            }}
          />
          <Tab.Screen 
            name="Post" 
            component={CameraScreen}
            options={{
              tabBarIcon: ({ color }) => <PlusIcon color={color} />
            }}
          />
          <Tab.Screen 
            name="Circles" 
            component={CirclesScreen}
            options={{
              tabBarIcon: ({ color }) => <CircleIcon color={color} />
            }}
          />
          <Tab.Screen 
            name="Profile" 
            component={ProfileScreen}
            options={{
              tabBarIcon: ({ color }) => <ProfileIcon color={color} />
            }}
          />
        </Tab.Navigator>
      </NavigationContainer>
    </Provider>
  );
}

2. Image Upload Pipeline with Compression

The biggest challenge: users upload high-res photos (3-8MB) that took 10-15 seconds. I built a compression pipeline that reduced upload time by 60%:

// services/imageService.ts
import * as ImageManipulator from 'expo-image-manipulator';
import * as FileSystem from 'expo-file-system';
import axios from 'axios';
 
interface CompressOptions {
  maxWidth: number;
  maxHeight: number;
  quality: number;
}
 
class ImageService {
  /**
   * Compress and upload image
   * 
   * Steps:
   * 1. Resize to max dimensions (1080x1920 for feed)
   * 2. Compress with quality setting
   * 3. Generate thumbnail (320x320)
   * 4. Upload both to S3 via presigned URL
   */
  async uploadOutfitPhoto(uri: string, userId: string): Promise<{
    fullUrl: string;
    thumbnailUrl: string;
    uploadTime: number;
  }> {
    const startTime = Date.now();
 
    try {
      // Step 1: Compress full-size image
      const compressed = await this.compressImage(uri, {
        maxWidth: 1080,
        maxHeight: 1920,
        quality: 0.8
      });
 
      // Step 2: Generate thumbnail
      const thumbnail = await this.generateThumbnail(uri);
 
      // Step 3: Get presigned URLs from backend
      const { fullPresignedUrl, thumbPresignedUrl } = await this.getPresignedUrls(userId);
 
      // Step 4: Upload in parallel
      await Promise.all([
        this.uploadToS3(compressed.uri, fullPresignedUrl),
        this.uploadToS3(thumbnail.uri, thumbPresignedUrl)
      ]);
 
      const uploadTime = Date.now() - startTime;
 
      return {
        fullUrl: fullPresignedUrl.split('?')[0], // Remove query params
        thumbnailUrl: thumbPresignedUrl.split('?')[0],
        uploadTime
      };
    } catch (error) {
      console.error('Image upload failed:', error);
      throw new Error('Failed to upload image');
    }
  }
 
  private async compressImage(
    uri: string,
    options: CompressOptions
  ): Promise<{ uri: string; width: number; height: number }> {
    const manipResult = await ImageManipulator.manipulateAsync(
      uri,
      [
        {
          resize: {
            width: options.maxWidth,
            height: options.maxHeight
          }
        }
      ],
      {
        compress: options.quality,
        format: ImageManipulator.SaveFormat.JPEG
      }
    );
 
    return manipResult;
  }
 
  private async generateThumbnail(uri: string): Promise<{ uri: string }> {
    // Square crop and resize to 320x320 for thumbnails
    const result = await ImageManipulator.manipulateAsync(
      uri,
      [
        {
          resize: {
            width: 320,
            height: 320
          }
        }
      ],
      {
        compress: 0.7,
        format: ImageManipulator.SaveFormat.JPEG
      }
    );
 
    return result;
  }
 
  private async uploadToS3(localUri: string, presignedUrl: string): Promise<void> {
    // Read file as binary
    const fileInfo = await FileSystem.getInfoAsync(localUri);
    
    if (!fileInfo.exists) {
      throw new Error('File does not exist');
    }
 
    // Upload to S3
    const blob = await fetch(localUri).then(r => r.blob());
    
    await axios.put(presignedUrl, blob, {
      headers: {
        'Content-Type': 'image/jpeg'
      }
    });
  }
 
  private async getPresignedUrls(userId: string): Promise<{
    fullPresignedUrl: string;
    thumbPresignedUrl: string;
  }> {
    const response = await axios.post('/api/images/presigned-urls', {
      userId,
      count: 2 // Full + thumbnail
    });
 
    return response.data;
  }
 
  /**
   * Progressive upload with retry logic
   * 
   * For poor network conditions, retry failed uploads
   */
  async uploadWithRetry(
    uri: string,
    userId: string,
    maxRetries: number = 3
  ): Promise<{ fullUrl: string; thumbnailUrl: string }> {
    let attempt = 0;
    let lastError;
 
    while (attempt < maxRetries) {
      try {
        return await this.uploadOutfitPhoto(uri, userId);
      } catch (error) {
        lastError = error;
        attempt++;
        
        if (attempt < maxRetries) {
          // Exponential backoff
          await new Promise(resolve => 
            setTimeout(resolve, Math.pow(2, attempt) * 1000)
          );
        }
      }
    }
 
    throw lastError;
  }
}
 
export default new ImageService();

Results:

3. Real-Time Feed with Infinite Scroll

Built a high-performance feed that loads quickly and handles 10k+ posts:

// screens/FeedScreen.tsx
import React, { useState, useEffect, useCallback } from 'react';
import {
  FlatList,
  RefreshControl,
  ActivityIndicator,
  View,
  Text,
  StyleSheet
} from 'react-native';
import { useDispatch, useSelector } from 'react-redux';
 
import PostCard from '../components/PostCard';
import { fetchFeed, refreshFeed } from '../store/feedSlice';
 
const POSTS_PER_PAGE = 20;
 
interface Post {
  id: string;
  userId: string;
  username: string;
  profilePicture: string;
  imageUrl: string;
  thumbnailUrl: string;
  caption: string;
  likes: number;
  comments: number;
  createdAt: string;
  isLiked: boolean;
}
 
export default function FeedScreen() {
  const dispatch = useDispatch();
  const { posts, loading, hasMore, page } = useSelector(state => state.feed);
  
  const [refreshing, setRefreshing] = useState(false);
 
  useEffect(() => {
    // Initial load
    loadFeed();
  }, []);
 
  const loadFeed = useCallback(async () => {
    try {
      await dispatch(fetchFeed({ page: 0, limit: POSTS_PER_PAGE }));
    } catch (error) {
      console.error('Failed to load feed:', error);
    }
  }, [dispatch]);
 
  const handleRefresh = useCallback(async () => {
    setRefreshing(true);
    try {
      await dispatch(refreshFeed({ limit: POSTS_PER_PAGE }));
    } catch (error) {
      console.error('Failed to refresh:', error);
    } finally {
      setRefreshing(false);
    }
  }, [dispatch]);
 
  const handleLoadMore = useCallback(() => {
    if (!loading && hasMore) {
      dispatch(fetchFeed({ page: page + 1, limit: POSTS_PER_PAGE }));
    }
  }, [loading, hasMore, page, dispatch]);
 
  const renderPost = useCallback(({ item }: { item: Post }) => (
    <PostCard post={item} />
  ), []);
 
  const renderFooter = useCallback(() => {
    if (!loading) return null;
    
    return (
      <View style={styles.footer}>
        <ActivityIndicator size="small" color="#fff" />
      </View>
    );
  }, [loading]);
 
  const renderEmpty = useCallback(() => (
    <View style={styles.empty}>
      <Text style={styles.emptyText}>No posts yet. Start sharing!</Text>
    </View>
  ), []);
 
  return (
    <View style={styles.container}>
      <FlatList
        data={posts}
        renderItem={renderPost}
        keyExtractor={item => item.id}
        onEndReached={handleLoadMore}
        onEndReachedThreshold={0.5}
        ListFooterComponent={renderFooter}
        ListEmptyComponent={renderEmpty}
        refreshControl={
          <RefreshControl
            refreshing={refreshing}
            onRefresh={handleRefresh}
            tintColor="#fff"
          />
        }
        maxToRenderPerBatch={10}
        windowSize={10}
        removeClippedSubviews={true}
        initialNumToRender={10}
      />
    </View>
  );
}
 
const styles = StyleSheet.create({
  container: {
    flex: 1,
    backgroundColor: '#000',
  },
  footer: {
    paddingVertical: 20,
    alignItems: 'center',
  },
  empty: {
    flex: 1,
    justifyContent: 'center',
    alignItems: 'center',
    paddingTop: 100,
  },
  emptyText: {
    color: '#666',
    fontSize: 16,
  }
});

4. Backend API (Node.js + Express)

// backend/server.ts
import express from 'express';
import mongoose from 'mongoose';
import cors from 'cors';
import helmet from 'helmet';
import rateLimit from 'express-rate-limit';
 
import authRoutes from './routes/auth';
import postRoutes from './routes/posts';
import userRoutes from './routes/users';
import imageRoutes from './routes/images';
 
const app = express();
 
// Middleware
app.use(helmet());
app.use(cors());
app.use(express.json({ limit: '10mb' }));
 
// Rate limiting
const limiter = rateLimit({
  windowMs: 15 * 60 * 1000, // 15 minutes
  max: 100 // limit each IP to 100 requests per windowMs
});
app.use('/api/', limiter);
 
// Routes
app.use('/api/auth', authRoutes);
app.use('/api/posts', postRoutes);
app.use('/api/users', userRoutes);
app.use('/api/images', imageRoutes);
 
// MongoDB connection
mongoose.connect(process.env.MONGODB_URI!, {
  useNewUrlParser: true,
  useUnifiedTopology: true
})
.then(() => console.log('MongoDB connected'))
.catch(err => console.error('MongoDB connection error:', err));
 
// Start server
const PORT = process.env.PORT || 3000;
app.listen(PORT, () => {
  console.log(`Server running on port ${PORT}`);
});

5. Feed Algorithm (Personalized Content)

// backend/services/feedService.ts
import { Post } from '../models/Post';
import { User } from '../models/User';
import { Follow } from '../models/Follow';
 
interface FeedOptions {
  userId: string;
  page: number;
  limit: number;
}
 
class FeedService {
  /**
   * Generate personalized feed
   * 
   * Algorithm:
   * 1. Get posts from followed users (70%)
   * 2. Get trending posts from network (20%)
   * 3. Get discover posts (random popular) (10%)
   * 4. Sort by engagement score + recency
   */
  async getFeed(options: FeedOptions): Promise<Post[]> {
    const { userId, page, limit } = options;
 
    // Get user's social graph
    const following = await Follow.find({ followerId: userId }).select('followingId');
    const followingIds = following.map(f => f.followingId);
 
    // Build weighted feed
    const feedPosts: Post[] = [];
 
    // 70% from following
    const followingLimit = Math.floor(limit * 0.7);
    const followingPosts = await this.getFollowingPosts(followingIds, page, followingLimit);
    feedPosts.push(...followingPosts);
 
    // 20% trending from extended network
    const trendingLimit = Math.floor(limit * 0.2);
    const trendingPosts = await this.getTrendingPosts(userId, followingIds, page, trendingLimit);
    feedPosts.push(...trendingPosts);
 
    // 10% discovery
    const discoverLimit = limit - followingPosts.length - trendingPosts.length;
    const discoverPosts = await this.getDiscoverPosts(userId, page, discoverLimit);
    feedPosts.push(...discoverPosts);
 
    // Score and sort
    const scoredPosts = feedPosts.map(post => ({
      ...post.toObject(),
      score: this.calculateEngagementScore(post)
    }));
 
    scoredPosts.sort((a, b) => b.score - a.score);
 
    return scoredPosts.slice(page * limit, (page + 1) * limit);
  }
 
  private async getFollowingPosts(
    followingIds: string[],
    page: number,
    limit: number
  ): Promise<Post[]> {
    return await Post.find({
      userId: { $in: followingIds }
    })
    .sort({ createdAt: -1 })
    .skip(page * limit)
    .limit(limit)
    .populate('userId', 'username profilePicture')
    .lean();
  }
 
  private async getTrendingPosts(
    userId: string,
    followingIds: string[],
    page: number,
    limit: number
  ): Promise<Post[]> {
    // Trending = high engagement in last 24 hours from extended network
    const oneDayAgo = new Date(Date.now() - 24 * 60 * 60 * 1000);
 
    // Get followers of people you follow (extended network)
    const extendedNetwork = await Follow.find({
      followerId: { $in: followingIds }
    }).select('followingId');
    
    const extendedIds = extendedNetwork.map(f => f.followingId);
 
    return await Post.find({
      userId: { $in: extendedIds, $ne: userId },
      createdAt: { $gte: oneDayAgo }
    })
    .sort({ likes: -1, comments: -1 })
    .limit(limit)
    .populate('userId', 'username profilePicture')
    .lean();
  }
 
  private async getDiscoverPosts(
    userId: string,
    page: number,
    limit: number
  ): Promise<Post[]> {
    // Random popular posts from last week
    const oneWeekAgo = new Date(Date.now() - 7 * 24 * 60 * 60 * 1000);
 
    return await Post.aggregate([
      {
        $match: {
          userId: { $ne: userId },
          createdAt: { $gte: oneWeekAgo },
          likes: { $gte: 10 } // At least 10 likes
        }
      },
      { $sample: { size: limit } }, // Random sample
      {
        $lookup: {
          from: 'users',
          localField: 'userId',
          foreignField: '_id',
          as: 'user'
        }
      },
      { $unwind: '$user' }
    ]);
  }
 
  private calculateEngagementScore(post: any): number {
    const ageHours = (Date.now() - new Date(post.createdAt).getTime()) / (1000 * 60 * 60);
    
    // Decay factor: newer posts get boost
    const decayFactor = Math.exp(-ageHours / 24); // Decay over 24 hours
    
    // Engagement metrics
    const likeScore = post.likes * 1.0;
    const commentScore = post.comments * 2.0; // Comments worth more
    const saveScore = (post.saves || 0) * 3.0; // Saves worth most
    
    const engagementScore = likeScore + commentScore + saveScore;
    
    return engagementScore * decayFactor;
  }
}
 
export default new FeedService();

6. MongoDB Schema Design

// backend/models/Post.ts
import mongoose, { Schema, Document } from 'mongoose';
 
export interface IPost extends Document {
  userId: string;
  imageUrl: string;
  thumbnailUrl: string;
  caption: string;
  tags: string[];
  brands: string[];
  category: string;
  likes: number;
  comments: number;
  saves: number;
  shares: number;
  views: number;
  isPublic: boolean;
  createdAt: Date;
  updatedAt: Date;
}
 
const PostSchema = new Schema({
  userId: {
    type: Schema.Types.ObjectId,
    ref: 'User',
    required: true,
    index: true
  },
  imageUrl: {
    type: String,
    required: true
  },
  thumbnailUrl: {
    type: String,
    required: true
  },
  caption: {
    type: String,
    maxlength: 500
  },
  tags: [{
    type: String,
    lowercase: true
  }],
  brands: [{
    type: String
  }],
  category: {
    type: String,
    enum: ['casual', 'formal', 'streetwear', 'athletic', 'vintage', 'other'],
    default: 'other'
  },
  likes: {
    type: Number,
    default: 0,
    index: true
  },
  comments: {
    type: Number,
    default: 0
  },
  saves: {
    type: Number,
    default: 0
  },
  shares: {
    type: Number,
    default: 0
  },
  views: {
    type: Number,
    default: 0
  },
  isPublic: {
    type: Boolean,
    default: true
  }
}, {
  timestamps: true
});
 
// Indexes for performance
PostSchema.index({ createdAt: -1 });
PostSchema.index({ userId: 1, createdAt: -1 });
PostSchema.index({ tags: 1 });
PostSchema.index({ brands: 1 });
 
// Text search index
PostSchema.index({ caption: 'text', tags: 'text' });
 
export const Post = mongoose.model<IPost>('Post', PostSchema);

7. Redis Caching Layer

// backend/services/cacheService.ts
import Redis from 'ioredis';
 
const redis = new Redis(process.env.REDIS_URL);
 
class CacheService {
  /**
   * Cache feed for 5 minutes
   * 
   * Key: `feed:${userId}:${page}`
   * Value: Serialized posts array
   */
  async cacheFeed(userId: string, page: number, posts: any[]): Promise<void> {
    const key = `feed:${userId}:${page}`;
    await redis.setex(key, 300, JSON.stringify(posts)); // 5 min TTL
  }
 
  async getCachedFeed(userId: string, page: number): Promise<any[] | null> {
    const key = `feed:${userId}:${page}`;
    const cached = await redis.get(key);
    
    if (!cached) return null;
    
    return JSON.parse(cached);
  }
 
  async invalidateUserFeed(userId: string): Promise<void> {
    // Invalidate all pages of user's feed
    const keys = await redis.keys(`feed:${userId}:*`);
    if (keys.length > 0) {
      await redis.del(...keys);
    }
  }
 
  /**
   * Cache user profile for 10 minutes
   */
  async cacheUserProfile(userId: string, profile: any): Promise<void> {
    const key = `user:${userId}`;
    await redis.setex(key, 600, JSON.stringify(profile));
  }
 
  async getCachedUserProfile(userId: string): Promise<any | null> {
    const key = `user:${userId}`;
    const cached = await redis.get(key);
    
    if (!cached) return null;
    
    return JSON.parse(cached);
  }
}
 
export default new CacheService();

Results

Growth Metrics (6 Months)

Metric Value
Beta Users 320
Daily Active Users 128 (40% DAU)
Total Posts 10,400+
Avg Posts/User 32.5
Avg Session Time 8.2 minutes
Retention (Day 7) 62%
Retention (Day 30) 45%

Technical Performance

Metric Before Optimization After Optimization
Image Upload Time 15 sec 5 sec (-67%)
Feed Load Time 3.2 sec 1.1 sec (-66%)
App Size 85 MB 42 MB (-51%)
Crash Rate 2.3% 0.4% (-83%)
API Response Time 850ms 220ms (-74%)

User Engagement

Platform Features Adoption

Feature Usage Rate
Feed 100%
Post Upload 78%
Likes/Comments 92%
Closet (Wardrobe) 65%
Racks (Collections) 43%
Circles (Groups) 38%
Brand Discovery 52%

Challenges & Solutions

Challenge 1: Poor Network Performance

Problem: Users on LTE/3G experienced 20-30 second upload times, 60% abandon rate.

Solution: Progressive loading + aggressive compression

// Progressive JPEG upload
const uploadProgressively = async (uri: string) => {
  // 1. Upload thumbnail immediately (320x320, ~50KB)
  const thumb = await generateThumbnail(uri);
  await uploadToS3(thumb, 'thumbnail');
  
  // 2. Show post in feed with thumbnail
  await createPost({ thumbnailUrl });
  
  // 3. Upload full image in background
  const full = await compressImage(uri);
  await uploadToS3(full, 'full');
  
  // 4. Update post with full image
  await updatePost({ fullUrl });
};

Result: Abandon rate dropped to 8%, users see posts instantly.

Challenge 2: Feed Performance with 10k+ Posts

Problem: MongoDB queries slowed to 2-3 seconds as post count grew.

Solution: Compound indexes + Redis caching

// Compound index on userId + createdAt
db.posts.createIndex({ userId: 1, createdAt: -1 });
 
// Cache feed results
const feed = await cacheService.getCachedFeed(userId, page);
if (feed) return feed;
 
const freshFeed = await feedService.getFeed(userId, page);
await cacheService.cacheFeed(userId, page, freshFeed);

Result: Query time dropped to 180ms, 90% cache hit rate.

Challenge 3: iOS TestFlight Review Delays

Problem: Apple review took 3-5 days per build, slowing iteration.

Solution:

Result: Effective release cycle reduced to 1-2 days.

Challenge 4: User Onboarding Drop-off

Problem: 45% of users abandoned during signup (6-step process).

Solution: Streamlined onboarding

// Before: 6 steps
// 1. Email/password
// 2. Username
// 3. Profile picture
// 4. Bio
// 5. Interests
// 6. Follow friends
 
// After: 2 steps
// 1. Email/password + username
// 2. Import contacts (optional)
// Rest done lazily in-app

Result: Drop-off reduced to 18%.

Future Enhancements

1. AI-Powered Style Recommendations

Use computer vision to recommend outfits based on user's closet:

# Train style classification model
from tensorflow import keras
 
model = keras.Sequential([
    keras.layers.Conv2D(32, (3, 3), activation='relu'),
    keras.layers.MaxPooling2D((2, 2)),
    keras.layers.Conv2D(64, (3, 3), activation='relu'),
    keras.layers.MaxPooling2D((2, 2)),
    keras.layers.Flatten(),
    keras.layers.Dense(128, activation='relu'),
    keras.layers.Dense(10, activation='softmax')  # Style categories
])
 
# Recommend similar outfits
similar_outfits = model.predict(user_closet_images)

2. AR Virtual Try-On

Integrate AR Kit/ARCore for virtual clothing try-on:

import { ARView } from 'react-native-arkit';
 
const VirtualTryOn = () => {
  return (
    <ARView>
      <ARClothingModel
        garmentUrl={selectedItem.modelUrl}
        position={userBodyTracking}
      />
    </ARView>
  );
};

3. Social Shopping Integration

One-tap purchase from posts:

// Deep link to brand product page
const handleBuyNow = (postId: string, brandId: string) => {
  const deepLink = `fitcheck://buy/${postId}?brand=${brandId}`;
  
  // Track affiliate conversion
  trackAffiliateClick(postId, brandId);
  
  // Open brand app or website
  Linking.openURL(brandLink);
};

4. Live Fashion Events

Host live outfit reviews and styling sessions:

import { LiveStream } from '@stream-io/react-native';
 
const LiveFashionShow = () => {
  return (
    <LiveStream
      streamId={eventId}
      onViewerJoin={handleViewerJoin}
      onComment={handleComment}
      features={['chat', 'reactions', 'polls']}
    />
  );
};

Conclusion

Building FitCheck from 0 to 300 users taught me how to scale a social platform on mobile:

Key Technical Wins:

Technologies: React Native, Expo, Node.js, MongoDB, AWS S3, Redis, TypeScript, TestFlight

Timeline: 6 months from MVP to 300 users

Impact: Created a community where 320 people share their style daily, fostering connections through fashion

This project proved that mobile-first social platforms can achieve strong engagement when you focus on fast load times, smooth UX, and solving a specific niche problem better than generalist platforms!


Additional Resources